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ABSTRACT .

Lichen-like pits are found in modern
and fossil’ Cerion shells from San Salvador
Island, Bahamas. These pits indicate that the
shells have undergone, or have started to
undergo, biodiagenesis.  Because of the
potential for biodiagenesis to alter shell
material, potential anomalies in geochronologic
analyses may result if these shells are used to
document the stratigraphy of Bahamian
Islands. A microscopic analysis of Cerion, or
other terrestrial shells from subtropical and
tropical environments, must be conducted
prior to age-dating analysis. Such an
examination will quickly elucidate whether the
shells have been altered by algae, fungi,
lichen, or lichen-like organisms.

INTRODUCTION

Lichen, fungi, and other microbionts
associated with carbonate shell material may
alter the substrate and accelerate diagenesis
(e.g., Lukas, 1979; Jones and Pemberton,
1986). These microbionts can pit and corrode
the surface of shells which leads to biotic
dissolution and corrosion features, a form of
biodiagenesis (after Jones and Kahle, 1985),
and may introduce organic and inorganic
contaminants. In addition to the affects on
potential age determinations resulting from
dissolution via subaerial exposure and meteoric
waters, microbionts can also affect the age-
dating of such shells (Walker, 1979). Cerion,
an ubiquitous terrestrial snail of the Bahamas
with an excellent modern and fossil record
(Gould, 1988; Gould and Woodruff, 1986,
1990; Garrett and Gould, 1984), is not immune
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to microbiont infestation.

Cerion is a
potentiallyimportantbiostratigraphic indicator
(Garrett and Gould, 1984) for the Quaternary
geology of the Bahamas, and it has had a
limited, albeit, controversial use in developing
a chronology for surficial rocks of the
Bahamas (Carew and Mylroie, 1995; Mirecki et
al.,, 1993). Its limited geochronologic
usefulness is primarily because a large standard
error is reported for AAR analyses using
Cerion shells from various localities (Mirecki et
al., 1993, and this volume). Could this be
from vital effects of the snail, or from
contamination by lichen or other microbionts
either before or after burial? Microbiont
occurrence was examined on modern and fossil
Cerion from San Salvador Island, Bahamas to
determine whether lichen-like associations
were present, and to determine how
widespread infestation by these organisms is.
Additionally, we wanted to determine if these
lichen-like organisms produce a taphonomic
signature on the shell that can be recognized
in fossil shells of Cerion.

METHODS

Modern and fossil shells of Cerion were
collected from 13 localities on San Salvador
Island, Bahamas. Shell height was measured
with calipers, and all shells were examined for
the presence of microbionts using a dissecting
microscope (at 400x). Among the microbionts
observed, the ones reported here are chiefly
lichen-like forms; black-colored organisms
that occur on both the calcareous substrate
(rock or soil) and modern and fossil shells.
Use of the term ‘“lichen-like" for these
organisms was suggested by Thomas Taylor



(pers. comm., 1996, University of Kansas).
Lichen-like organisms make pits in the shells,

very much like those reported from bioerosion

in intertidal areas. Similar black coatings have
been attributed to lichen on brecciated
limestone clasts (Jones and Kahle, 1985), and
black lichen is also reported to form caliche in
tropical and subtropical environments (Klappa,
1979). Thus, the term "lichen-like" is chosen
here to describe this biotic feature seen on
empty shells of modern and fossil Cerion.
Also, cyanobacteria and algae are also present
in shells that have a greenish coloration.

RESULTS

Examination of 748 modern and fossil
Cerion shells indicates that lichen-like pits are
primarily associated with float shells found at
fossil localities (Table 1). "Float" shells are not
in situ, but consist chiefly of fossil shells that
have eroded out of an adjacent deposit, and
come to rest on the modern substrate, where
they are more prone to infestation with the
lichen-like organisms that are found in these
carbonate sands and soils (similar to algae and
fungi described by Kahle, 1977). In situ fossil
shells may also be infested by lichen-like
organisms, if the shell is exposed above the
surrounding matrix (Walker, pers. observ.).
This is not -a purely modern phenomenon,
however, as shells currently imbedded in
matrix may have been reworked in similar
fashion in the past.

The lichen-like pits on the float and
modern shells commonly contain this black-
colored microbiont, but it is not present within
similar pits on fossil shells that were enclosed
by a surrounding matrix (i. e., in situ). The
occurrence of lichen-like pits on examined
fossil shells varied from none (at Watling's
Quarry West) up to 75% (at the upper Gulf
site) (Table 1). The mean percent of
occurrence of pitting on shells from fossil sites
was 23%. The mean percent of occurrence of
lichen-like pitting on float shells was 47%.

Lichen-like pitting commonly occurs
on portions of shells that are in contact with
the substrate, which sometimes produces a
"ring-like" feature on the shells (Figure 1A,
B). The lichen-like organism produces
roughened, irregular to perfectly rounded pits
on the exterior and the interior of the aperture
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of Cerion shells (Figure 2).
DISCUSSION

Microbionts (e.g., fungi, lichen, algae)
use acids to bore into carbonate substrates
(Golubic, 1969; Silverman and Munoz, 1970).
These organisms may also be responsible for
forming calcareous crusts by a process
involving both acidic dissolution and re-
precipitation of micrite ("sparmicritisation”),
but this process is not well understood (Kabhle,
1977). Similar "crust-like" features occur
within calcareous "paleosol” deposits that
contain fossil Cerion. Some fossil-bearing
deposits have also been seen to be covered by
black, lichen-like crusts. Shells in contact
with these crusts will be invaded by lichen-
like organisms, and will develop and retain a
taphonomic signature of irregular to rounded
pits found on many areas of the shell.

The occurrence of lichen-like pits
indicate that a shell has undergone, or has
started to undergo, biodiagenesis. Because of
the potential for biodiagenesis to alter shell
material (e. g., Jones and Pemberton, 1986)
and produce potential age-dating anomalies
(Walker, 1979), it is imperative that a
microscopic analysis of Cerion, or other
terrestrial shells from subtropical and tropical
environments, be conducted prior to age-
determination analysis. Such an examination
will quickly elucidate whether the shells have
been altered by algae, fungi, lichen, or lichen-
like organisms.
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TABLE 1. Lichen-like pittin

Bahamas

Locality Sample Size Shell Height Pitting from Presence of

mean in mm Lichen Algae/Cyano-
range No. (% bacteria

Aimgreen Cay 51 21.23 2(0.04) 0(0.0)

Fossil (6.85-24.57)

Altar Cave 43 19.38 2(0.05) 1(0.02)

Fossil (15.54-20.98)

Altar Cave 44 19.14 23 (0.52) 0(0.0)

Float (15.68-21.60)

Catto Cay, Fossil 50 19.05 13 (0.26) 0 (0.0)
(17.86-22.22)

Crab Cay, Fossil 16 20.84 1 (0.06) 0 (0.0)
(18.70-26.75)

French Bay, 42 21.96 23 (0.55) 0(0.0)

Fossil (19.61-25.59)

Man Head Cay 101 14.70 9 (0.21) 0 (0.0)

Fossil (13.04-17.18)

North Point 55 23.68 8 (0.15) 2(0.04)

Holocene 21.24-27 61)

North Point 101 23.88 19 (0.19) 30 (0.30)

Float (19.97-25.84)

Snow Bay, Fossil 14 23.94 3(0.21) 0 (0.0)
(22.86-29.10)

The Bluft 32 24.49 7(0.22) 0(0.0)

Upper Paleosol (21.35-28.43)

Fossil

The Bluff, 16 23.48 1(0.08) 0(0.0)

Lower Protosol (18.96-27.72)

The Upper Gulf 32 2259 24 (0.75) 0(0.0)

Paleoso! (fossil) (18.43-27.24)

Watling's 44 19.56 0 (0.0) 0 (0.0)

Quarry (16.92-21.76)

West, fossil

Watling’s Quarry 35 17.78 10 (0.29) 9 (0.0)

East Side, Fossil (13.77-22.75)

Watling Quarry 72 18.86 50 (0.69) 0(0.0)

Float (10.03-23.02)
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g on modern and fossil Cerion, San Salvador Island,
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Figure 2. Lichen-like organisms and their pits on a Recent Cerion. (750x).
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