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TEMPORAL VARIATIONS IN THE PHOSPHORUS CONTENT OF BAHAMIAN SEAGRASSES -

Shelby D. Harper and Garriet W. Smith
Biology Department
University of South Carolina at Aiken
Aiken, SC 29801

ABSTRACT

Seagrasses growing in the oligotrophic waters and
carbonate sediments of San Salvador, Bahamas are
nutrient stressed. As a result, the size oftheplantsare
greatly reduced compared with those growing in
terrigenous sediments or more eutrophic waters.
Previous fertilization studies indicated that the primary
limiting nutrient in San Salvador seagrasses is
phosphorus. Seagrasses extracted from core samples
taken biannually from 1988 until the present, in
Graham’s Harbor and French Bay, were analyzed for
phosphorus content in stem-leaf and root-rhizome
tissue. Considerable variation, in all tissues from all
species, was observed throughout the sampling period.
In Graham's Harbor, significant spikes in [P] of
Halodule wrightii stem-leaves and root-rhizomes were
observed from July 1992 samples. Thalassia
testudinium stem-leaves, root-thizomes  and
Syingodium filliformis root-rhizomes all had significant
increases in [P] from December 1995 samples. In
French Bay, a cyclic increase in [P] was found in
Syringodium and Thalassia root-thizomes. The [P] of
Thalassia stem-leaves increased steadily from July
1992 until December 1994, then dropped. We are
continuing to observe these fluctuations and attempting
to correlate them with other parameters.

INTRODUCTION

Seagrasses provide significant amounts of primary
and secondary production in shallow, coastal, marine
environments (Zieman, 1982; Thayer er al., 1984).
Most fixed carbon is provided to other trophic levels
directly via microbial degradation of the plant tissue
(Smith, 1987, Kenworthy et al. 1989), although direct
herbivory can also be important (Ogden, 1976; Lewis,
1986). Seagrass meadows also stabilize sediments and
act as a barrier against wave action (Fonseca, 1989;
Fonseca and Fisher, (1986). The presence of extensive

root-rhizome systems provide an environment for

nutrient interactions among the plants, associated
microbicta and sediments (Morgan and Smith, 1992;
Smith and Hayasaka, 1982; Smith et al., 1984; Wehner
and Smith, 1994; Wong and Smith, 1994) These

interactions often change the chemical nature of the
sediments (Kaplan et al., 1990).

The growth and biomass of seagrass species are
generaly reduced in oligotrophic waters and nutrient-
poor carbonate sediments (Zieman et al., 1997), typical
of the Bahamas, including San Salvador Island (Gerace
et al., 1997). The relatively low productivity rates
exhibited by seagrasses in San Salvador were shown to
be due to phosphorus limitation (Short et al, 1985;
1990).

The purpose of the present study was to determine
temporal variations in tissue phosphorus content of the
seagrasses, Thalassia testudinum, Halodule wrightii
and Syringodium filiforme at a high-energy site (French
Bay) and a stable, relatively low-energy site (Graham’s
Harbor) in San Salvador Island, Bahamas. This island
has been undergoing increases in development and
population since 1992. Seagrasses have been monitored
at the two sample sites since 1988. Correlations among
growth measurements, development and tissue
phosphorus content may then be assessed.

MATERIALS AND METHODS

Seagrass cores were taken biyearly (July and
December), beginning in 1988, from Graham’s Harbor
and French Bay (Fig. 1). Triplicate cores were taken at
2M intervals along a 60M transect line, each sampling
period to a depth of 20cm. Contents of cores were put
into plastic bags and washed free of adhering sediment
on shore. Plant material was taken to the BFS
laboratory and washed in 0.1 N HCI to remove
epiphytes, sorted by species and plant part (stem-leaves
or root-rhizomes), and dried at 100 C for 48 h. Material
was then weighted and taken to USCA for chemical
analysis,

Dried seagrass tissue was ground in a wiley mill,
acid digested and ashed in a combustion oven. Dry ash

. was dissolved and phosphorus concentration
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determined spectrophotometrically and compared with
standard a curve (Strickland and Parsons, 1972).



Figure 1, San Salvador Island, Bahamas. Graham’s
Harbor is at the northern, protected end. French
Bay is at the southern, more exposed end of the
island.
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RESULTS AND DISCUSSION

The [P] of stems and leaves from all seagrass
species in Graham’s Harbor fluctuated from 0.1 to just
over 0.3 % over the sampling period (Fig. 2), with two
unusual peaks, both to approximately 0.5 % P. The
first was Halodule in the summer of 1992, the other
was Thalassia in the winter of 1995. Halodule would
be expected to be a sensitive indicator of increased
levels of P since this plant harbors nitrogen-fixing
bacteria in its’ roots (Smith, 1996) and both N and P

occur at low concentrations in this environment, The -

building of Club Med in San Salvador was in full
swing at this time. It is not known if this was the cause
of the spike since prevailing currents from the building
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sitc were not toward Graham’s Harbor. Storms,
however, can change the overall direction for short
periods. The other spike in [P] in stems and leaves at
Graham’s Harbor occurred with Thalassia during the
winter of 1995. Although Thalassia is not thought to be
as efficient at recycling unavailable P (apatite and
organic-P) as the pioneering species (particularly
Syringodium, Wehner and Smith,1994). Once
mineralized, Thalassia can take up and transport P
efficiently. The root-rhizome [P} of Syringodium was
high during this time (Fig.3), as was the root-rhizome
[P) for Thalassia. This indicates concentrations of
organic-P may have been high at this time.

Root-rhizome [P] in Graham’s Harbor was
somewhat lower than for leaves and stems, except for
winter peaks generally observed with Syringodium.
Again, this indicates a major role played by
Syringodium in providing available P to other species.
This is analogous to the role played by Halodule
providing fixed N to other seagrass species. Although
scagrass biomass is dominated by Thalassia in
Graham’s Harbor (Smith et al., 1995), shoot density is
approximately equal. There appears to be a nutritional
symbiosis within the seagrass community in Graham’s
Harbor.

In French Bay, the stem-leaf [P]s were high for
both species in the winters of 1988 and 1989. The
following summer concentrations fell to below 0.1%
and remained near that for Syringodium (Fig.4). The
stem-leaf [P] steadily increased for Thalassia from July
1992 to December 1994, then decreased (Fig. 5). Root-
rhizome [P] showed peaks in July 1992, July 1994 and
December 1995 for Syringodium. Delayed peaks (by a
season) were seen in root-rhizome samples of
Thalassia in French Bay. This increase in Thalassia
root-thizome [P] may be due to the recycling of
Syringodium root-rhizome tissue.

Overall comparisons of 7Zhalassia and
Syringodium tissue [P]s are given in Figures 6-9. No
general trend was found with either Thalassia tissue
type (Figs. 6,7), or with Syringodium root-rhizome
tissue (Fig. 8). Syringodium stems and leaves from
Graham’s Harbor, however, always had a higher [P]
than those from French Bay (Fig. 9).

In conclusion, phosphorus cycling within and
among seagrass species in a common meadow appears
complex. Only Syringodium showed any cyclic
behavior. The [P] of Thalassia tissue seems to increase
after Syringodium, indicating a recycling mechanism
initiated by the latter species. Spikes in [P] may have
occurred due to activities associated with construction
or, more recently, storm events.



Figure 2. Percent phosphorus of above sediment seagrass tissue from Graham’s Harbor (1988-1996).
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Figure 3. Percent phosphorus of below sediment seagrass tissue from Graham’s Harbor (1988-1996).
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Figure 4.
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Figure 6. Comparison of the % P in Thalassia root-rhizomes from Graham’s Harbor and French Bay.
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Figure 7. Comparison of the % P in Thalassia stems-leaves from Graham’s Harbor and French Bay.
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Figure 8.
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