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ABSTRACT

Bacteria comprise part of the ‘normal
microbiota’ of the surface mucopolysaccharide

layers (SML) of hard corals. There is evidence .

that these organisms may nutritionally enrich
the coral mucus, which may then be ingested
by the coral animal. Other ecological roles of
SML bacteria may include protection against
pathogens and mineral transformations. Very
little, however, is known about the identity or
activities of these communities. SML samples
were taken throughout 1993-94 from a variety
of coral species growing off the coast of San
Salvador, Bahamas, and used to estimate
overall metabolic activity. We used a
dehydrogenase assay based on the competitive
inhibition of oxidized NAD by tetrazolium
(INT) to bind with the enzyme. Rates of
formazan production (INT-reduction) were
higher for samples from bleached corals
(Acropora cervicornis and Porites asteroides)
than from nonbleached stands. In general,
overall activity was higher for large
boulder-type corals than for encrusting or
branching species.

INTRODUCTION

Living corals produce a covering of
mucoid material, much of which is lost to the
surrounding seawater (Means and Sigleo,
1986). Particulate nutrients can be trapped in
this material (Lewis and Price, 1977), and
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accumulated sediment can be removed by
overproduction and elimination of mucus
sheets (Hubbard and Pocock, 1972). This
mucus layer is composed primarily of
mucopolysaccharides (Daumus and Thomassin,
1977; Ducklow and Mitchell, 1979; Pascal and
Vacelet, 1982). Mucolipids, rich in palmitoleic
and myristic acids (Patton et al., 1977, Means
and Sigleo, 1986), and amino acid
hydrolysates, rich in glycine, glutamate, serine
and alanine residues (Daumas et al.,, 1982;
Ducklow and Mitchell, 1979; Means and
Sigleo, 1986), make up a smaller porportion of
the surface mucopolysaccharide layers (SML)
of scleractinian corals.

The coral SML provides a habitat, as
well as an oxidizable substrate, for resident
heterotrophic bacteria (Ducklow and Mitchell,
1979; Rublee et al., 1980). Segel and Ducklow
(1982) reported that elevated mucus production
rates (due to pollution stress) also increased
bacterial levels in the SML. Pascal and Vacelet
(1982) suggested that the SML provides a
matrix of framwork in which bacteria attach
themselves. Bacteria have been shown to
densely colonize this environment (Disalvo,
1971; Sieburth, 1975); they consume part of
the mucus (Herndl and Velimirov,1986), and
are themselves partly consumed by the coral
animal (Sorokin, 1973). The SML may also be
enriched through nitrogen fixation (Williams et
al., 1987), thus increasing N:P ratios (Schiller
and Herndl, 1989).

The composition of SML heterotrophic



bacterial communities has, until recently,
received little attention. Bacterial community
differences, based on carbon source utilization
patterns between species and as a result of
bleaching, were observed in Montastrea
annularis and Acropora cervicornis (Ritchie et
al.,1994a; 1994b; Ritchie and Smith, 1995a).
Paul et al., (1986) reported increased levels of
thymidine incorporation in the SML compared
to surrounding seawater.

The purpose of this study was to
compare overall metabolic activity in the SML
from a variety of scleractinian coral species
growing in oligotrophic waters of the Bahamas.
Comparisons were also made between bleached
and normal colonies when these were found.
An INT-linked dehydrogenase assay was used
to determine nonspecific overall activity.

MATERIAL AND METHODS
Sample Collection

Samples of the SML from Montastrea
annularis, Acropora cervicornis, A. palmata,
Porites porites, P. astreoides, Agaricia
agaricites, Dichocoenia stokesi and D.
labyrinthiformis were obtained from shallow
patch reefs surrounding San Salvador Island,
Bahamas using needleless 3.0 ml syringes.
Seawater samples from reef sites, SML samples
from isolated bleached colonies of P.
astreoides, and SML samples from Acropora
cervicornis showing symptoms of white-band
disease were also taken. All samples were
transferred to sterile vials on shore and placed
in ice. These were kept at 3 C until laboratory
assays were performed.

INT Assay

Samples were allowed to equilibrate at
room temperature for three hours and vortexed
at full speed for two minutes before 0.5 ml
subsamples were added to reaction vials.
Reaction vials contained 0.25 ml of a 1.5 mg
ml-!, 2-(p-Iodophenyl)-3-(p-nitrophenyl)-
5-phenyl-2H-tetrazolium Chloride (INT,
Kodak) and 0.5 ml of 2X GASW medium
(Smith and Hayasaka, 1982). Reaction vials
were then incubated in the dark at room
temperature for three days. After three days
vials were assayed for formazan activity,

ug Formazan/ml
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except for the A. cervicornis experiment which
was sampled every 12 hours. The absorbance
of reduced INT (Formazan) was measured
spectrophotometricly at 490nm and
concentration determined by comparison with
a standard curve of triphenyl formazan
(Kodak). Sterile artificial seawater treated
identically was used as a control. Four
replicates were run on all samples and controls.

RESULTS AND DISCUSSION
A time course showing the evolution of

formazan from A. cervicornis samples is shown
in Figure 1. The exponential increase in the
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Figure 1. INT reduction of A. cervicornis

rate of formazan production with white-band
samples indicates that the bacterial community
was actively growing and metabolising. SML
bacteria from normal corals were not much
more active than seawater samples. Metabolic
activity in seawater can vary considerably,
depending on the amount of suspended
sediment (Smith, 1988). Table 1 shows this
variation in INT reduction from seawater
samples obtained at different times. This
variation was not as pronounced with coral
SML samples and, in every case, INT
reduction rates were higher for A. cervicornis
samples showing white-band symptoms than
for normal (uninfected) samples. White-band
samples, then, appear to exhibit both a
qualitative change in the composition as well as
a greater level of metabolic activity of the
SML bacterial community (Ritchie and Smith,
1995a). This might be due to the release
metabolites resulting from the death of coral
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Table 1. Temporal and spatial variation of INT reduction in the SML of A. cervicornis.

ug Formazan ml™*

Site Month Control  Seawater Normal

Potters Reef 6-93 0 21.5 (71.0)* 12.1 (4.8)
8-93 0 0.2 (0.1) 10.5 (0.7)

Rocky Point 7-93 0 23.5(8.7) 10.8 (1.3)
10-93 0 10.2 (4.2) 229 (2.1)

Whiteband

29.0 (4.3)
22.3 (1.8)

15.6 (1.0)
26.2 (1.8)

Table 2. INT reduction of normal and bleached P. astrecides (Standard Error)

ug Formazan mi™"

Control Seawater
0 0.02 (0.01)

Normal
0.18 (0.17)

Bleached
5.59 (2.86)

Table 3. INT reduction in the SML of various scleractinian coral species.

Growth Form Species Sample Date ug Formazan ml™* (standard error)
Branching Acropora palmata 7-94 12.8 (3.8)
10-94 16.5 (4.4)
Acropora cervicornis 7-94 30.0 (4.8)
10-94 10.0 (2.3)
2-95 23.6 (0.9)
Porites porites 7-94 8.2 (0.6)
2-95 28.0 (8.1)
Encrusting Porites asteroides 7-94 14.5 (8.0)
10-94 18.7 (6.6)
2-95 16.7 (1.6)
Agaricia agaricites 11-94 4.8 (2.2)
2-95 23.5 (3.7)
Boulder Montastrea annularis 3-94 25.1 (4.5)
2-95 23.8 (2.0)
Diploria labyrinthisformis 10-94 60‘.6 (18.8)
Dichocoenia stokesi 2-95 22.4 (2.3)
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tissue. Ritchie and Smith observed (1995b)
that substrates, likely to be released by recent
coral death, were preferential for white-band
SML isolates. A 30-fold increase was also
observed with SML samples from bleached P.
astreoides over normal tissue (Table 2).

A comparison of INT reduction rates,
in SML’s of eight normal species of
scleractinian corals sampled at various times in
1994, is presented in Table 3. Among the
branching growth forms, both A. cervicornis
and P. porites showed a three-fold temporal
variation. Agaricia agaricites had the lowest
rate of INT reduction (11/94), as well as the
greatest temporal variation (five-fold
difference). The highest INT reduction rate
was measured from D. labyrinthiformis
samples. These samples were taken from a
large colony, apparently recovering from
sediment stress, so mucus production would be
expected to be relatively high. Encrusting
growth forms, in general, had the lowest rates

of INT reductxon (ave. 15.6 ug formazan
produced ml-1), followed by branchmg forms

(ave. 18.4 (ug formazan produced ml-!), and
highest rates were observed with large boulder

cofo:;xes (ave. 33.0 ug formazan produced
m

Although bacterial metabolic activity
in the SML of sceractinian corals has been
measured before (for example, Pascal and
Vacelet, 1982; Paul et al, 1986), it has not, to
our knowledge, been measured using a
technique as nonselective as INT reduction
(Pamatmat, 1977). This assay has been
sucessfully used in other marine environments
(Smith and Hayasaka, 1986) and, since
dehydrogenase catalysed reactions are essential
to all heterotrophs, INT reduction can be used
as a general metabolic index.
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