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ABSTRACT 

   Cat Island, Bahamas, contains some unusual 
island karst features.  Cat’s Cradle, a blue hole in 
the east-central Cat Island, is a progradational 
collapse structure that breached a large eolian 
calcarenite dune. The subaerial walls of the 
collapse are stepped at 3 m elevation, with the 
upper wall set back farther than the lower wall.  
This upper wall contains a complete ring of flank 
margin caves that open onto the bench above the 
blue hole.  If the mixing model for flank margin 
speleogenesis is correct, then the blue hole was 
marine during the 6 m high MIS 5e sea-level 
highstand. 
   A 2 km long section of the east coast of Cat 
Island is a late Pleistocene back-beach breccia 
facies, indicating strand plain progradation, 
followed by wave erosion of that plain to create 
back-beach breccia, and subsequent continuing 
progradation of the strand plain. The fresh-water 
lens followed that progradation and created flank 
margin caves within the breccia facies, indicating 
the rapidity with which flank margin cave 
speleogenesis operates, as the entire sequence of 
rock deposition and dissolution had to be 
accomplished within the ~ 9 ka long MIS 5e 
event. 
   Big Cave, in central Cat Island, is located at 55 
m elevation on a shoulder of Mount Alvernia, the 
highest point in The Bahamas at 62 m elevation. 
The cave has all the small- and large-scale 
bedrock morphologies found in flank margin 

caves, but cannot be a flank margin cave in the 
traditional sense given its elevation above any 
possible Quaternary sea-level highstand. Cave 
genesis within freshwater lens perched on a terra 
rossa paleosol has been previously offered as a 
possible explanation. 

INTRODUCTION 

   A karst reconnaissance trip was made by the 
authors to Cat Island, Bahamas, from February 3 
to February 18, 2016.  The purpose of this 
expedition was to locate, survey, and catalogue 
cave and karst features as part of a project of the 
Coastal Cave Survey, an informal cave research 
group that specializes in coastal and island caves.  
This work built on reconnaissance done in 
February 2006 for the Cat Island field trip (Figure 
1) to be run in June of that year by the Gerace 
Research Centre as part of the 13th Symposium of 
the Geology of The Bahamas and Other 
Carbonate Regions (Mylroie et al. 2006).  The 
2016 expedition also built on much earlier work 
by Rob Palmer and colleagues that had 
specialized on the caves of Cat Island (McHale 
1986; Palmer 1986; Palmer et al. 1986).  The 
geology of Cat Island has not been well studied, 
the manuscript by Lind (1969) on coastal 
landforms being one of the few pieces of geologic 
literature available before 2006. The 2006 field 
guide reconnaissance trip led to a return to Cat 
Island by several participants to study specific  
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satellite imagery, available DEM models and 
topographic maps.  
   Each flank margin cave was mapped by use of 
compass, inclinometer and tape (or laser range 
finder), with passage detail sketched to scale and 
annotated. The resulting cave map data are 
reduced and drafted using computer software 
Compass (www.fountainware.com) and Adobe 
Illustrator, respectively. The maps were then 
analyzed to provide additional morphometric 
parameters (NIH Image J software – 
www.NIH.gov) including the total aerial footprint 
of the cave. The maximum height of each phreatic 
dissolutional surface represents a minimum fresh-
water lens position, and by extension, sea-level 
position at the time of cave origin. Cave length, 
the traditional measurement of cave size, is not an 
appropriate value for flank margin caves, which 
are connections of globular chambers and 
passages. The aerial footprint is a better measure 
of the cave size in this circumstance (Mylroie 
2007; Waterstrat, et al. 2010). Flank margin caves 
form in the distal margin of the fresh-water lens 
where the lens is thin (Mylroie and Mylroie 2007; 
Mylroie 2013), therefore aerial footprint is a 
suitable proxy of cave volume as the vertical 
range of the cave is restricted.   
   The cave data were collected under permit from 
the Bahamian government, through the Bahamas 
Environment, Science and Technology 
Commission (BEST), who control release of such 
information. Cave location information is 
especially sensitive, given the vulnerability of 
caves and cave deposits to vandalism, desecration, 
and looting.   

RESULTS 

Breccia block facies 
   The first feature of interest was found while 
hiking northward along the east coast of Cat 
Island to cut a trail into a blue hole seen by a 
private airplane while flying into Cat Island with 
one of the authors aboard (Figure 1).  The coast in 
this area is a bench about 3 to 8 m above sea-
level. The bench is a mixture of beach, lagoonal, 
and breccia block facies (Figure 2).  Because the 
breccia block facies is covered in part by terra 

rossa paleosol (Figure 2B), the initial 
interpretation was a solution collapse breccia 
similar to what is seen on the south coast of San 
Salvador Island at French Bay (Florea et al. 
2001).  Closer examination revealed that the 
blocks were covered by the terra rossa paleosol, 
but that the terra rossa material was not providing 
a matrix for supporting the blocks, the blocks 
instead rested in a clean, white sand (Figure 2C). 
Such breccia block facies are found all across the 
Bahamas, as first described in detail by Carew and 
Mylroie (1985; 1995) at Grotto Beach on San 
Salvador Island, where a Pleistocene example in 
the rock record is adjacent to a Holocene example 
currently in the process of formation.  The terra 
rossa covering the breccia block facies, and the 
lagoonal facies adjacent to the blocks at 6 m 
elevation, demonstrate that the breccia block 
facies is Pleistocene in age, most likely from the 
last interglacial, MIS substage 5e.  The MIS 5e 
highstand is believed to have lasted in The 
Bahamas from 124 to 115 ka (Thompson et al. 
2011). 
   At numerous locations along this bench, flank 
margin caves of modest size are developed in the 
breccia block facies, the largest being Dragon 
Cave (Figures 3 and 4). This cave is entered from 
a roof collapse and contains numerous phreatic 
dissolutional features, indicating development 
within the MIS 5e fresh-water lens.  The 
configuration of the cave does not favor a sea 
cave pseudokarst interpretation.  Secondary 
calcite speleothems are present (Figure 4D). The 
cave meets all the requirements of a flank margin 
cave (Mylroie and Mylroie 2007, 2013; Waterstrat 
et al. 2010).  A few other caves on the bench, of a 
similar nature, were also mapped.  
 
Cat’s Cradle blue hole 
   The second feature of interest is the blue hole 
located inland of the bench with the breccia block 
facies (Figure 1).  This blue hole, Cat’s Cradle, is 
a progradational collapse feature that has 
penetrated the side of an eolian calcarenite ridge, 
producing high walls that lead down to water 
(Figures 5 and 6).  The high wall has a bench, or 
step in it 3 m above water level, and which 
contains numerous small caves of phreatic origin, 
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DISCUSSION 

Breccia block facies 
   The breccia block facies provide two important 
contributions.  First, this is the most extensive 
outcrop of such facies as has been observed by the 
authors on the 15 Bahamian islands (and four 
similar islands in the Turks and Caicos) where we 
have conducted field work.  The breccia block 
facies indicates how rapidly deposition and 
lithification events occur in young carbonates.  
The production of carbonate allochems for this 
facies, their emplacement as beach rock, and the 
subsequent disarticulation of that beach rock by 
wave energy, with entombment in lagoonal sands 
and prograding beach sands, all occurred during 
the first part of MIS 5e, which was only 9,000 
years long in the Bahamas (Thompson et al. 
2011). Syngenetically, the fresh-water lens 
invaded the prograding beach that began to infill 
parts of the lagoon, and flank margin caves 
developed within that breccia block facies before 
the end of MIS 5e ~115 ka, as outlined by Figure 
9.  Such syngenetic cave development in young 
carbonates has been part of a recent description 
and classification of how fast dissolutional caves 
can form in young carbonates (White et al. 2018). 
   Second, the development of flank margin caves 
in the breccia block facies is also an indication of 
how ground water dissolution occurs in eogenetic 
carbonates when water and solute transport is by 
diffuse flow.  The essential outcome is that the 
facies characteristics have little impact on cave 
development, and the morphology of the cave 
thus produced, regardless of whether the facies 
are lagoonal sands, framework reefs, eolianites, or 
as in this case, breccia block facies.  Because most 
cave and karst studies, until recently, have been 
done in carbonate telogenetic rocks in continental 
settings, where turbulent flow in fractures, 
bedding planes, joints and faults governs ground 
water flow and the subsequent cave morphology, 
the differences contrast with cave development in 
locations such as The Bahamas was long 
unrecognized (Mylroie and Mylroie 2007, 2017, 
2019).  The breccia block facies on Cat Island is 
an outstanding example of the rapidity of flank 
margin cave development, and the unique 

morphologies produced in eogenetic carbonates 
by diffuse flow regardless of facies type. 
 
Cat’s Cradle blue hole 
   Cat’s Cradle blue hole is a classic blue hole that 
appears to be the result of progradational collapse 
of a large dissolution void at depth.  The models 
for blue hole origin are reviewed by Mylroie, et 
al., 1995; the most common type of blue hole, and 
the ones that produce large, circular pipes leading 
deeply downwards, are thought to be formed by 
progradational collapse.  Larson and Mylroie 
(2018) demonstrated that the large voids at depth 
that cause the collapse, and accommodate the 
collapse material, develop from large conduit 
systems that form on the Bahama Banks when 
sea-level is below the bank top and as a result 
these banks become very large islands.  Such 
conditions support production of turbulent flow 
conduits, which are senescent at today’s high sea-
level but can still be explored by cave divers. 
   Cat’s Cradle is somewhat unusual in that the 
collapse has prograded up through the side of an 
eolianite ridge, to produce there 8 to 10 meters of 
vertical wall between the land surface and the 
water in the blue hole, which is at current sea-
level (Figure 5).  Most blue holes of the 
progradational type open onto lowland plains in 
The Bahamas, and the amount of relief between 
the land surface and the blue hole water is only 
one or two meters.  This aspect makes Cat’s 
Cradle look a bit like a cenote from the Yucatan 
of Mexico (e.g. Mylroie et al. 1995) as opposed to 
a typical Bahamian blue hole.   
   The location of the eolianite ridge in the 
pathway of the progradational collapse means that 
during MIS 5e, when sea-level was 6 m higher 
than at present, there would have been mixing 
between the waters of the blue hole (likely to be 
sea water) and the fresh-water lens in the 
surrounding ridge.  This mixing, and other 
associated chemical reactions involving organics 
and their decay, formed flank margin caves in a 
ring around the blue hole (Figures 6 and 7).  
These caves promoted instability in the high wall 
surrounding the blue hole, and after the end of 
MIS 5e; their partial collapse resulted in a bench 
being developed in the high wall at the elevation 
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   Field work in the Big Cave area has been 
minimal.  The effort so far has been to map the 
cave (Figure 8), but the supposed terra rossa 
paleosol has not yet been detected.  In weathered 
outcrops, such paleosols are notoriously hard to 
document (e.g. Figure 11C versus 11D). If Burial 
Cave were truly natural, a similar speleogenesis 
mechanism would need to be proposed for its 
development. 

   If the paleosol argument cannot be proven, then 
there is a conundrum as to how to form a feature 
like Big Cave.  As Mylroie (2013) and Mylroie et 
al. (2018) have discussed, Big Cave represents a 
challenge to the flank margin cave model.  It is 
not so much a challenge to that model, which 
works very well in sea-level environments, as it is 
a question about how caves form in eogenetic 
eolian calcarenites that are not flank margin caves 
but show clear evidence of development in a 
diffuse flow hydrologic setting. 
 

CONCLUSIONS 

   The three features from Cat Island discussed in 
this paper: breccia block facies, Cat’s Cradle blue 
hole, and Big Cave, all present interesting 
phenomena that relate both to cave formation in 
eogenetic carbonate rocks, and also implications 
for sea-level magnitude and position in the 
Quaternary in The Bahamas.  Both the breccia 
block facies and Cat’s Cradle blue hole 
demonstrate the rapidity with which flank margin 
caves can form, and their subsequent influence on 
the landscape immediately around them.  Big 
Cave is a clear anomaly: is that its true status or 
does it represent something that is more common 
than we have previously recognized?  In any case, 
field work is planned to examine the Big Cave 
area thoroughly to see if a terra rossa paleosol or 
some other factor can explain its unusual position 
in the topography of Cat Island.   
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