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NUTRIENT ECOLOGY OF BAHAMIAN SEAGRASSES
Frederick T. Short
Jackson Estuarine Laboratory
University of New Hampshire
Durham, NII
Seagrasses comprise a group of submerged marine
angiosperns found worldwide in shallow tropical and temperate

oceans (flartog, 1970). Two seagrass species, Thalassia

testudinum Danks ex Konig, and Syringodium filiforme Kiitzing

dominate the tropical western Horth Atlantic and Caribbean
coastal environments. Both species represent significant primary
production of Dbiomass (Table 1), Thalassia often dominating

within the upper 10m, while Syringodium is abundant from shallow

water to 25m (El-Sayed et al, 1972). Thalassia is the most
widely researched of the tropical seagrasses (McRoy and McMillan,
1977), even though it has a more complex vegetative morphology

than Syringodium (Tomlinson, 1974). Rates of production for

Syringodium are high, 2.0 g C m"2d’1, in the Bahamas (Table 1),

although higher rates have been reported for Thalassia (Zieman

and Wetzel, 1980). However, Syringodium shoot production exceeds

that of Thalassia (Short, 1985). Studies of 1leaf loss have
demonstrated that dead leaves and leaf sheaths of Thalassia (Fig.
1) are deposited near vegetative shoots, while detached leaf

material of Syringodium is exported from seagrass beds (Zieman et

al., 1979; Short, pers. obs.). Therefore, the organic input into
the sediments of a Thalassia bed includes dead detrital leaf
material in addition to 1root and rhizome material, while in

Syringodium beds the only organic seagrass input is below the

sediment surface. Rates of root and rhizome growth and



SYRINGODIUM .

FIGURE 1. The seagrasses Syringodium filiforme and Thalassia testudium (from
Tomlinson, 1974) showing the attached old leaf sheaths around each short
shoot of Thalassia and the absence of old sheaths on Syringodium short
shoots. The absence of decomposing leaf material around the shoot of
Syringodium results in less complex sediment nutrient cycles.




Table 1 . Leaf biomass and production of seagrass species in the Bahamas

Species Biomass Production Reference
(gdry m2) (gC m2d7])

Thalassia 53 Patriquin, 1972
testudinum
200. 2.10 Capone, et al. 1979
75.4 0.14 Jensen and Gibson unpubl.
Syringodium 159. 200 Short, et al. 1985
filiforme
7.6 0.01 Jensen and Gibson unpubl.
Halodule 59 0.004 Jensen and Gibson unpubl.
wrighti

decomposition (Xenworthy, pers. com,) appear to be much faster

for Syringodium than for Thalassia. It could be said that

Syringodium beds are more dynamic and 1less complex tropical

seagrass systems than those of Thalassia.

The chemical composition of seagrasses in tropical and
temperate environments indicates a wide range of carbon to
nitrogen to phosphorous ratios (C:N:P) (Table 2). Comparison of
benthic plant samples from a variety of 1locations shows a
significant difference between samples from low- and

high-nutrient environmnents (Atkinson and Smith, 1983).

Measurements of C:N:P for the seagrass Syringodium filiforme
(Table 3) from terriginous sediments in TFlorida and from

carbonate sediments in the Bahamas also indicate depletion of N



Table 2. Comparative C:N:P Atomic Ratios for Seagrasses From

Around the World.

SEAGRASS C:N:Pl REFERENCE2
ATOMIC RATIO

LEAVES

Enhalus acoroides (Palau) 1000:48:1 S
Syringodium filiforme (Bahamas) 1390:47:1 Short et al., 1985
Zostera marina (virginia) 584:41:1

Posidonia oceanica (Corsica) 956:39:1

Thalassia testudinum (Barbados) $32:1

Posidonia ostenfeldia (W. Australia) 1070:29:1
Thalassia hemprichii (N. Queensland) 599:27:1

Phyllospadix scouleri (California) 509:24:1
Amphibolls griffithii (W. Australia) 535:20:1
Cymodocea serrulatat (N. Queensland) $19:1
Halodule univervis (N. Queensland) 623:18:1
Syringodium isoetifolium (N. Queensland) :17:1
Zostera capricorni (N. Queensland) :17:1
Posidonia sinuosa (W. Australia) 512:16:1
CymodOcea nodosa (Corsica) 408:15:1
RHI ZOME

gyringodium filiforme (Bahamas) 3550:49:1
Posidonia oceanica (Corsica) 1749:40:1
Thalassia testidinum (Barbados) £20:1
Enhalus acoroides (Palau) 659:16:1
Halodule univervis (N. Queensland) 388:14:1
Cymodocea serrulata (N. Queensland) ~~ 872:13:1
Syringodium isoetifolium (N. Queensland) :10:1
Zostera capricorni(N. Queensland) e 8:1
ROOTS

Posidonia oceanica (Corsica) 3550:61:1
Syringodium filiforme (Bahamas) 2080:44:1
Posidonia sinuosa (W. Australia) 809:18:1

Birch 1975

Birch 1975
Birch 1975

Short et al., 1985

Birch 1975
Birch 1975

Short et al., 1985

1Highest reported N:P known for each seagrass species.

2Values from Atkinson and Smith (1983) unless otherwise noted.



Table 3. Atomic ratios for carbon, nitrogen and phosphorus for the seagrass

Syringodium filiforme.

Syringodium Indian River, FL San Salvador, Bahamas
filiforme C:N:P C:N:P

ILeaves 388:24:1 1390:47:1
Rhizome 450:17:1 3550:49:1
Roots 429:13:1 2080:44:1

and P relative to carbon in the low-nutrient Bahamian environment
(Short et al., 1985; Short et al., in prep.). A high N:P for
plants growing in carbonate environments has been observed
repeatedly, suggesting sparse available P resources (Entsch et
al.,, 1983; Atkinson and Smith, 1983; Short et al., 1985).

The kinetics of P and N uptake have not been published
for any of the tropical seagrass species. Thus, my discussion of
nutrient acquisition Dby seagrasses must rely on what is known

about nutrient uptake Dby the temperate seagrass Zostera marina

and similar freshwater angiosperms. Rates of phosphate uptake
have been neasured of both 1leaves and roots of Zostera at
concentrations ranging from 0.06-8.9 nM P (Penhale and Thayer,
1980) . Their study indicated that uptake rates for both the
roots and 1leaves depended on P concentration. Measurement of P
uptake in several freshwater angiosperms supports this finding

and shows that these species obtain most of the P for growth from



the sediments (Carignan and Kalff, 1980). The kinetics of N
uptake in Zostera have received considerable attention recently
(Iizumi and Hattori, 1982; Thursby and Harlin, 1982; Short and
McRoy, 1984), with somewhat divergeht results. The evidence does
show, however, that measured rates of N uptake are a function of
concentration for both roots and leaves. Rates of N depletion
from flowing seawater by a tropical seagrass community (Halodule
wrightii) suggest a similar concentration-dependent uptake (Short
and Short, 1984).

The significance of concentration-dependent nutrient
uptake in tropical seagrass leaves becomes obvious when
considering the oligotrophic conditions in tropical and
subtropical oceans (Ryther, 1963). In addition, the relatively
low concentrations of P and N reported for the pore water of
carbonate sediments in seagrass beds (Patriquin, 1972; Short et
al., 1985) illustrate the need for examination of nutrient uptake
by seagrass roots at 1low concentrations. This is particularly
true for P uptake. Studies indicate that dissolved phosphate
concentrations are maintained at 1low levels (0-10 PM P) due to
the rapid removal of phosphate onto carbonate sediments (Berner,
1974; DeKanel and Morse, 1978; Kitano et al., 1978; Gaudette and
Lyons, 1980). Thus, even where there are large amounts of P in
the sediments, P is in an adsorbed form and many not be directly
available to the plants.

The role of seagrasses in influencing sediment redox
conditions and nutrient p061 sizes is an important consideration
in the evaluation of P and N cycling (Short, 1986). Imn fact,

these considerations may be intricately connected to the status
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Figure 2: Major flows of phosphorus in the carbonate seagrass

environments. Pathways include: phosphate uptake; regeneration;
geochemical sorption; diffusive flux.

of P 1limitation in carbonate seagrass environments, Recent
evidence has established the significance of ammonium
regeneration in temperate Zostera sediment (Iizumi et al., 1982).
The importance of anaerobic oxidation and nutrient regeneration
is virtually unknown for tropical seagrass sediments (Short et
al., 1985).

The biological cycle of P (Fig. 2) is simple in principle
(Cosgrove, 1977). Unlike N, P wusually does not undergo
oxidation-reduction processes (for exceptions see Silverman and
Ehrlich, 1964). In general, phosphate is taken up biologically,
incorporated into organo-P and finally released as phosphate

during decomposition (Fenchel and Blackburn, 1979). This cycle



is hampered by the tendeﬁcy of phosphate to be adsorbed to clays
and metal oxides and to form insoluble compounds such as apatitie
and vivianite. The stoichiometric regeneration of phosphate
during sulfate reduction is well documented (i.e. Berner 1974,
1978, 1980; Goldhaber et al., 1977; Aller, 1977, Martens and
Goldhaber, 1978). Reducing conditions are also responsible for
the dissolution of FePOy4, thereby releasing phosphate into
solution. Although Smith et al. (1978) have demonstrated that
the P in the mineral apatite is available to bacteria and algae,
it does not appear that the form of adsorbed P in natural
carbonates is avalilable to seagrasses.

The apparent rapid regeneration of nutrients in anoxic
carbonate sediments does not result in increased pore water
concentrations (Berner, 1974; Rosenfeld, 1979b; Short et al.,
1985). Low concentrations of phosphate relative to ammonium have
been observed in a number of studies of carbonate sedimentary
pore water (Rosenfeld, 1979b; Gaudette and Lyons, 1980; Hines and
Lyons, 1982; Short et al., 1985). The low dissolved phosphate
concentrations may be a result of adsorption of P on carbonate
sediment grains and organic coatings, diagenetic formation of
apatite, or replacement of calcium carbonate with a
phosphate-rich phase (Seuss, 1970; Berner, 1974; DeKanel and
Morse, 1978; Wilson, 1979; Gaudette and Lyons, 1980). Pore water
samples from carbonate sediments of seagrass beds and coral reefs
also contain low phosphate concentrations, although additional
phosphate can be extracted with seawater from these sediments
(Patriquin, 1972; Entsch et al., 1983; Short et al., 1985).

The potential pathways of N in seagrass systems are
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Figure 3: iajor flows of aitrogen in the carbonate environment.
Pathways include: uptake; denitrification; N fixation;
aitrification; dissimilatory nitrate reduction; ammonification;
diffusive flux.

‘numerous (Fig. 3). No fixation, denitrification, nitrification,
‘ammonification, and dissimilatory nitrate reduction to ammonium
have all bheen found to occur in various seagrass sediments. TEach
process interacts with the ambient pools of nitrogen. Coupling
between processes is 1likely, as the products of one pathway are
the substrates of another. Various factors affect the nature and
extent of the transformations of N that occur in a particular
sediment, including sediment grain size, organic loading,
infaunal activity, temperature, and Og availability.

Seagrass sediments are favorable and, in fact, very
important sites of lig fixation (Capone and Carpenter, 1982;

Capone, 1983a,b). Additionally, ammonium is present in



interstitial and adsorbed forms in carbonate sediments
(Rosenfeld, 1979a, b; Short et al., 1985). These results suggest
that one-third to one-half of the ammonium in these sediments is
extractable. Rosenfeld (1979b) found that 1less ammonium was
extractable from carbonate than terrigenous sediments of
comparable dissolved ammonium concentrations and that the
adsorbed ammonium in carbonate sediments was predominately
associated with organic matter.

In 1982 I studied a seagrass bed of Syringodium filiforme

in Graham's Harbor, a shallow semi-enclosed lagoon at the north
end of San Salvador Island, Bahamas (Fig. 4). This 1lagoon
averages 1-2 meters in depth and is protected from oceanic swells
and storms by fringing islands and coral reefs, a configuration
that allows extensive flushing of the seagrass bed with
oligotrophic Atlantic Ocean water while dissipating most of the
wave energy. A S. filiforme bed located on the west side of Cut
Cay was selected for study because it represented a monospecific
stand of seagrass in an area of uniform environmental conditions,
i.e., constant water depth, relatively uniform current flow, and
fine-grained carbonate mud.

Abundant S. filiforme was found in a pure stand having
average maximum biomass of 816g dry m~2 (Table 4) and a
relatively high 1leaf growth rate (2.0g C m‘2d‘1) for 1late
October. This 1is 1in the range.of other reported rates for this
species and comparable to prodution rates for other seagrasses
(Zieman and Wetzel, 1980; Fry, 1983) although this is only a
portion of whole plant growth., Plant biomass represents a pool

2

of 0.10g P mn~2 and 2.05g¢ N m™“ in the leaves, 0.10g P mfz and
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Figure 4. San Salvador Island, Bahamas, showing the location of the study
site west of Cut Cay in Graham's Harbor.
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2.09g N m_2 in the roots, producing a total seagrass pool of

0.32g P m~2 and 6.50g N m~2 or a N:P of 20:1. Root biomass in
this S. filiforme bed accounts for more than one-third of the
total plant biomass (Table 4). The large portion of nitrogen and
phosphorus in these roots (Table 2) is not typical for seagrasses
(Birch, 1975; Aioi ‘and Mukai, 1980; Atkinson and Smith, 1983).

Similarly, the C:N:P for S. filiforme rhizome is greater than
that reported for other seagrasses (Table 2)., The atomic ratio
for leaves (N:P=47) is higher than any value reported for marine

or freshwater spermatophytes, which range from 5 to 41 except for

one value of 48 for Enhalus acoroides from Palau (Raven, 1981;

Atkinson and Smith, 1983). Phosphorus depletion is not
considered the typical situation in marine ecosystems where the
atomic ratio, C:N:P, for marine plankton has been established at
106:16:1 (Redfield et al., 1963)., The equivalent ratio for the
photosynthetic portion of many seagrass species averages 507:21:1
(Atkxinson and Smith, 1983). Comparison to the ratio for S.
filiforme leavds, ®C:N:P=1390:47:1, suggests depletion of both
phosphorus and nitrogen relative to carbon.

The 1low nitrogen and phosphorus content of these plants
indicates that the plant system has adapted to conditions of
scarce primary nutrient resources. The average N:P of 47 for S.
filiforme tissue coantent in San Salvador is similar to that of
interstitial water from core samples (Short et al., 1985).

Since the uptake of phosphate by roots of the temperate

seagrass Zostera marina is concentration-dependent (Penhale and

Thayer, 1980) it is expected that the rate of autrient uptake by

tropical seagrass roots in sediments of low phosphate

13



concentration will be slow, This slow phosphate uptake rate
appears to be the major obstacle to the accumulation of phosphate
in S. filiforme tissue. In contrast, the ammonium concentration
in the sediment interstitial water provides a large supply of
nitrogen to the seagrass roots., The rate-limiting step of
phosphate uptake by S. filiforme 1roots may explain the
inordinately high root biomass observed for these sediments
(Table 4). Increasing the root surface area is an effective

norphological mechanism for increasing nutrient uptake at low
concentrations (Short, 1983a). Thus the acquisition of phosphate
by S. filiforme is limited by both the sparse supply in the water
colﬁmn and the plants' inability to rapidly take up phosphate

from the sediments.
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