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ABSTRACT

Beachrock deposits can be extremely
variable in terms of composition, grain size, and
cement mineralogy, but are consistent in overall
morphology, taking the form of lithified, gently-
dipping strata. On the island of Tinian (Mariana
Islands), however, in addition to the conventional
beachrock deposits, certain pocket beaches exhibit
unusual  stalactitic  features, which  are
morphologically unique, but can be petrologically
indistinguishable from beachrock.

INTRODUCTION

Beachrock is lithified beach sand,
commonly composed of sand grains cemented by
CaCO; (Scoffin and Stoddart, 1983). Beachrock is
highly variable in composition, grain size, and
mineralogy, but is characteristically consistent in
morphology, taking the form of subhorizontal
layers of cemented beach sand dipping gently
toward the sea (Bernier and Dalongeville, 1996).

Beachrock appears to be a group of allied,
but diverse deposits. Disparities related to
composition (e.g., Strecker et al., 1987), grain size
(e.g., Scoffin, 1970), cement mineralogy and
origin (Scoffin and Stoddart, 1983), and climatic
(e.g., Kneale and Viles, 2000) and hydrologic
settings (e.g., Binkley and Wilkinson, 1980) have
all been reported. However, the morphological
aspect of beachrock is quite constant and although
variations exist in bedding (e.g., Boekschoten,
1962), thickness, and secondary shaping by waves
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and swash (e.g., McLean, 1967), beachrock
deposits consistently take the form of beds or
slabs. Nevertheless, a particular combination of
local factors can result in deposits petrologically
analogous to beachrock but which exhibit an
utterly different appearance.

METHODOLOGY

Fieldwork was carried out in December
2002 and May 2003, as a part of a project to
inventory the karst features of Tinian (Mariana
Islands, western Pacific; for location see inset in
Fig.1 in Taboro§i et al., this volume). During field
reconnaissance of elevated marine notches,
conspicuous secondary deposits attached to
coastal rock overhangs were recognized and were
sampled with hammer and chisel. Samples were
cut, dried, and examined macroscopically and
with a binocular scope. Then a detailed study was
conducted of resin-impregnated petrographic thin
sections, using conventional transmitted-light
microscopy and SEM microscopy of small
fragments sputter-coated with platinum.

RESULTS

Coastal cliffs and scarps on Tinian and
other tropical carbonate islands sometimes exhibit
unusual stalactitic and drapery-like secondary
deposits reminiscent of speleothems. Termed
“littoral dripstone and flowstone” (Taborosi et al.,
2003), these deposits are a unique coastal variety
of outside tufa stalactites commonly seen
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plastered to limestone cliffs in the humid tropics
(Taborosi et al.. 2004a; Taborosi and Hirakawa,

2005). Composed of poorly organized
microcrystalline calcite and aragonite, these
rudimentary deposits arise from the same
underlying mechanisms as typical carbonate

speleothems, but exhibit a tufaceous and highly
irregular makeup (rather than macrocrystalline),
due to the specific microclimatic and biologic
conditions operating in coastal epigean settings
(Taborosi et al., 2005). Surprisingly, we have
observed that, in certain cases. these coastal
“stalactites™ are composed of cemented beach
sand instead of the wholly precipitated
microcrystalline calcareous tufa-like material as
expected.

Shaped like bulbous stalactites and
draperies up to 25 cm wide and long, the
cemented sand features occur attached to the roofs
and walls of coastal notches (Figure 1). They are
easily identified as deposits secondary to the
bedrock to which they are attached. They are
superimposed on bioerosional and dissolutional
karren (Taborosi et al., 2004b), and their dark
exterior coloration, caused by well developed
supratidal biofilms, can be in stark contrast to the
surrounding rock. The incidence of these
cemented sand deposits is highly localized. They
are found exclusively at elevations up to 2 m
above the mean sea level in those coastal notches
that partly extend above unconsolidated beach
sand, a situation common in alcove beaches.
These deposits are superficially identical to
littoral dripstone and flowstone, and their
outermost parts are often composed of the same
material, layered tufa, which envelops the
cemented sand bodies.

The makeup of the lithified sand mass
reflects the composition of carbonate beaches on
Tinian and consists of cemented, locally-derived
fossiliferous grains, including foraminiferal tests
and fragments of scleractinian corals, calcareous
algae, gastropods, and bivalves (Figure 2). The
grains are generally coated with microcrystalline
cement of variable thickness, and locally
surrounded by isopachous rims of acicular cement
(Figure 3) as in typical beachrock (Scoffin and
Stoddart, 1983). The two types of cement
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frequently occur in succession, forming up to four
sequences, similar to what has been reported by
Bernier et al. (1990) in beachrock from Tabhiti.
The cement also occludes intergranular and

intragranular pores and exhibits meniscus and rim
shapes, which are indicative of vadose conditions
(Meyers, 1987). The mineralogy of the cement is
low-Mg calcite (typical of meteoric environments)
and aragonite (indicating marine influence).

Figure 1. Stalactitic deposits of cemented beach
sand in_situ. They are attached to the roof and
back wall of a coastal notch. Note their position
superimposed on karren, and the dark color in
contrast lo the bedrock. Tape reel is 14.5 cm in
diameter.

DISCUSSION

The origin of these deposits is rather
obvious from the fact that they never cover wide
tracts, as normal beachrock does, but instead hang
from distinct points in the coastal notch ceilings.
Shifting of beach sands can fill coastal notches,
placing unconsolidated sand beneath the vadose
zone of an indurated bedrock outcrop. As vadose
water (both meteoric precipitation as well as sea
spray) percolates directly into the beach sediment
from the pores or cracks in the overhanging
bedrock, CO, degassing, which has been
experimentally demonstrated by Hanor (1978) as
sufficient to cause beachrock cementation,
triggers the precipitation of calcium carbonate
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which acts as cement. Only sand close to the input
source is cemented, as precipitation ceases when
the dissolved calcium carbonate is consumed,
leaving the surrounding sediment uncemented.
The resulting lithified sand bodies are revealed
once the loose beach sediment is removed by
storm events or relative sea level changes. They
continue to form in the absence of loose sand by
addition of tufa-like layers of microcrystalline
calcite precipitated from dripping epikarstic
walter.

Figure 2. Cross-section of the bulbous specimen

illustrated in  Figure 1. Note that it s
predominantly composed of cemented unsorted
beach sand. The smallest particles are mostly
tests of benthic foraminifera, while the largest are
fragments of corals (1) and mollusks (2).
Surrounding the cemented sand mass (4) is an
outer envelope of layered microcrystalline
tufaceous material (B) that is devoid of any pre-
existing grains and was entirely precipitated in
situ. Scale in centimeters.

CONCLUSION

Despite no genetic relations, these unusual
deposits convincingly mimic beachrock and are
hereby termed “beachrock pendants™ They are
genetically related to and morphologically
reminiscent of stalactites, but are petrologically
indistinguishable from beachrock. Regardless of
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whether their incidence proves to be scarce and
highly localized or geographically widespread but
previously unrecognized, they provide a valuable
insight into carbonate cementation under
conditions of point input of vadose groundwater
directly into beach sediment. Downward

percolation of vadose water is generally not
considered important in beachrock cementation,
but has been recognized as a possibility by
Russell (1962).

Figure 3. Thin-section photomicrographs of
cemented material impregnated with clear,
undyed epoxy resin. Note that the skeletal grains
are cemented by isopachous rims of acicular
cement (1), underlain by pronounced dark layers
of micrite (2). The rims probably formed by
microbial activity and then served as nucleation
sites for crystals. Also note the complete infilling
of intragranular pore space (3), the remaining
empty intergranular space (4), meniscus cement
typical of vadose conditions (3), and multiple
layers of microcrystalline and acicular needle
cement (6).
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